Deep feature learning with relative distance comparison for person re-identification

نویسندگان

  • Shengyong Ding
  • Liang Lin
  • Guangrun Wang
  • Hongyang Chao
چکیده

Identifying the same individual across different scenes is an important yet difficult task in intelligent video surveillance. Its main difficulty lies in how to preserve similarity of the same person against large appearance and structure variation while discriminating different individuals. In this paper, we present a scalable distance driven feature learning framework based on the deep neural network for person reidentification, and demonstrate its effectiveness to handle the existing challenges. Specifically, given the training images with the class labels (person IDs), we first produce a large number of triplet units, each of which contains three images, i.e. one person with a matched reference and a mismatched reference. Treating the units as the input, we build the convolutional neural network to generate the layered representations, and follow with the L2 distance metric. By means of parameter optimization, our framework tends to maximize the relative distance between the matched pair and the mismatched pair for each triplet unit. Moreover, a nontrivial issue arising with the framework is that the triplet organization cubically enlarges the number of training triplets, as one image can be involved into several triplet units. To overcome this problem, we develop an effective triplet generation scheme and an optimized gradient descent algorithm, making the computational load mainly depend on the number of original images instead of the number of triplets. On several challenging databases, our approach achieves very promising results and outperforms other state-of-the-art approaches. & 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding Deep Metric for Person Re-identification: A Study Against Large Variations

Person re-identification is challenging due to the large variations of pose, illumination, occlusion and camera view. Owing to these variations, the pedestrian data is distributed as highly-curved manifolds in the feature space, despite the current convolutional neural networks (CNN)’s capability of feature extraction. However, the distribution is unknown, so it is difficult to use the geodesic...

متن کامل

Deep ranking model by large adaptive margin learning for person re-identification

Person re-identification aims to match images of the same person across disjoint camera views, which is a challenging problem in video surveillance. The major challenge of this task lies in how to preserve the similarity of the same person against large variations caused by complex backgrounds, mutual occlusions and different illuminations, while discriminating the different individuals. In thi...

متن کامل

Deep Feature Learning via Structured Graph Laplacian Embedding for Person Re-Identification

Learning the distance metric between pairs of examples is of great importance for visual recognition, especially for person re-identification (Re-Id). Recently, the contrastive and triplet loss are proposed to enhance the discriminative power of the deeply learned features, and have achieved remarkable success. As can be seen, either the contrastive or triplet loss is just one special case of t...

متن کامل

Person re-identification with fusion of hand-crafted and deep pose-based body region features

Person re-identification (re-ID) aims to accurately retrieve a person from a large-scale database of images captured across multiple cameras. Existing works learn deep representations using a large training subset of unique persons. However, identifying unseen persons is critical for a good re-ID algorithm. Moreover, the misalignment between person crops to detection errors or pose variations l...

متن کامل

Constrained Deep Metric Learning for Person Re-identification

Person re-identification aims to re-identify the probe image from a given set of images under different camera views. It is challenging due to large variations of pose, illumination, occlusion and camera view. Since the convolutional neural networks (CNN) have excellent capability of feature extraction, certain deep learning methods have been recently applied in person re-identification. Howeve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2015